Rt,选修课的作业题,训练集有大概 220 万条 35 维的非平衡数据( 97:3 ),目前用的是 SMOTE 把它转化为平衡数据集,训练模型用的是 neighbors.KNeighborsClassifier。 预测结果为(用训练集里面的一部分训练的,全部的要运行好久,结果也很低) 精确率: [0.0895584 0.97825833] 召回率: [0.39105505 0.87329187] F1 值: [0.14573984 0.92279977] 想问怎么同时提高小样本类的精确率( precision_score )和召回率( recall_score )?数据处理部分和训练模型部分的方法都可以