V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
V2EX  ›  wittyfans  ›  全部回复第 15 页 / 共 16 页
回复总数  310
1 ... 7  8  9  10  11  12  13  14  15  16  
2020-04-08 12:23:06 +08:00
回复了 christin 创建的主题 Apple 苹果交通卡支持市政一卡通了
意思先去办个交通联合的卡,再绑到苹果手机?
2020-03-27 10:53:21 +08:00
回复了 smallgoogle 创建的主题 Python requests 如何保持长链接
session
2020-03-26 22:01:12 +08:00
回复了 matthewye0724 创建的主题 酷工作 [社招直推] 上海 eBay 美企,电商 ,不加班, WLB
已投 Data Operations Analyst 哈哈
2020-03-24 20:15:12 +08:00
回复了 qwingmix 创建的主题 问与答 数据统计分析求轮子,指标监测方面
每天抓一次数据存到数据库就行了,你没说具体遇到的问题,也不好给建议。
2020-03-21 21:38:52 +08:00
回复了 cnbot 创建的主题 问与答 如何保存/抓取贴吧的帖子为 txt 文档
贴吧的还是蛮简单的,可以直接根据页码拿到结果
2020-03-19 23:58:11 +08:00
回复了 sonlia 创建的主题 机器学习 邮件按标题分类
这块不是很了解,你们是打算先人工定义好分类,有了 label 后再做监督学习,还是直接用非监督学习?
2020-03-19 23:28:56 +08:00
回复了 yafoo 创建的主题 程序员 ios 浏览器、webview 简直就是手机端的 IE6,你有同感吗?
额,用户体验来说,我觉得 safari 还是蛮好用的,流畅无广告。
2020-03-19 15:10:19 +08:00
回复了 VingeRayCN 创建的主题 Apple iPad 何时能成为程序员的生产力工具
家里搞个 mac mini 或者 pc,再买个 iPad pro,就不需要笔记本了
@thinszx 不客气,我也是在别人那里学到的,再分享你一些我常用的 groupy 的例子:


# 显示所有组,后面是值的 index'
df_gp = dff.groupby('name')
df_gp.groups

# 拿到某个 group 的值
df_gp.get_group('bryan chen')

# 根据名字的第一部分来 group
dff.groupby(dff.name.str.split(' ').str[0]).size()

# 根据名字中是否有 wittyfans 来 group
dff.groupby(dff.name.apply(lambda x: 'wittyfans' in x)).size()

# 对 groupby 的值,平均分段统计后汇总数量
df_mean.groupby(
pd.qcut(
x=df_mean['AUSTRALIA - AUSTRALIAN DOLLAR/US$'],
q=3,labels=['low','mid','hight']
)
).size()

# 对一列值分组
pd.qcut(
x=df_mean['AUSTRALIA - AUSTRALIAN DOLLAR/US$'],
q=3,labels=['low','mid','hight']
)

# 按照自定义的值来分组
df_mean.groupby(
pd.cut(
df_mean['CHINA - YUAN/US$'],
[6.0,6.5,7.0,7.5,8.0,8.5]
)).size()

# 根据指定日期列来 resmaple,再做分组统计
dff.groupby(
pd.Grouper(
key='start',
freq='d'
)
).size()

# 根据指定日期列来 resmaple,再 apply 你的函数
df.reset_index().groupby(
pd.Grouper(
key='Time Serie',
freq='5Y'
)
)['CHINA - YUAN/US$'].apply(np.mean)

# 根据指定日志来 resample,再结合多个聚合函数
df.reset_index().groupby(
pd.Grouper(
key='Time Serie',
freq='5Y'
)
).agg(
{
'HONG KONG - HONG KONG DOLLAR/US$':'mean',
'CHINA - YUAN/US$':['median','std','mean']
})

# 偶尔 groupy 重命名很麻烦,可以这样写:(pandas>=2.5)
aggregation = {
'china': ('CHINA - YUAN/US$','mean'),
'hk': ('HONG KONG - HONG KONG DOLLAR/US$','mean')
}

df.groupby('region').agg(**aggregation)

# groupby 返回的是 reduce 的数据,如果要根据某个分类分组,然后再计算单个值占该组的占比,可以这样写
df['%'] = df.groupby('location')['name'].transform(lambda x:x/sum(x))

# 使用 filter 配合 groupby 选择数据
df.groupby('location').filter(
lambda x: (x['worklog'] * x['ticket_num']).sum() > 20000
)

df.groupby('location').filter(
lambda x: (x['worklog'] * x['ticket_num']).mean() > .3
)

上面提到的一些列名,有的来自 kaggle 上的汇率数据,有的是我自己平时处理的数据,不理解的自己实际操作下就懂了。
2020-03-19 12:20:38 +08:00
回复了 Tony4ee 创建的主题 iPad 感觉 2018 年买到 iPad Pro 的人血赚
血赚,我买的 10.5,现在还很香,美版的 4g,当时 3600。
2020-03-19 11:58:04 +08:00
回复了 d0m2o08 创建的主题 程序员 有用 iOS 原生邮件应用使用 outlook 的么?
我配了公司的 outlook 和自己的,暂时没有问题,不行就重新删了账号再配一遍?
跑个题,原生的 mail 应用蛮好用的,国内手机厂自带的帐号系统根本配不上公司的 outlook,只得下载 outlook 应用解决,某为连 outlook 应用都没法用,邮件无法同步,遇到好几个同事都这样。
2020-03-19 11:50:02 +08:00
回复了 wittyfans 创建的主题 问与答 有订阅过 O'Reilly 的吗?
@cosmic 确实,iPad 看效果很不错,iPad 看看 PDF 是真的舒服,虽然看久了眼睛会有一定的酸,这点没 kindle 好,但技术性书,iPad 更合适,因为查阅资料需要快速翻来翻去的,kindle 就很慢。
2020-03-18 22:23:57 +08:00
回复了 wittyfans 创建的主题 问与答 有订阅过 O'Reilly 的吗?
https://www.v2ex.com/t/630935

通过这个帖子下单了,真香
2020-03-18 21:45:55 +08:00
回复了 wittyfans 创建的主题 问与答 有订阅过 O'Reilly 的吗?
@zeocax 中国会员可以看英文版的书吗?
2020-03-18 21:44:12 +08:00
回复了 ihuzhou 创建的主题 问与答 新 iPad Pro 终于出了,悄无声息
键盘这个设计厉害,价格就有点贵了,2399
2020-03-18 21:17:50 +08:00
回复了 kkshell 创建的主题 问与答 你们 2 月工资怎么算?
砍了两个人,十三薪只有 40%,2 月奖金只有 10%。
2020-03-15 23:34:40 +08:00
回复了 levelworm 创建的主题 Python 给准备做 BI 数据可视化的朋友一个建议
@qwjhb 好像就是他们没这个打算
不一定是 twitter,不限平台,如果你对某个领域感兴趣,自然会接触到一些优质内容,我在 twitter 上就只关注了一些 YouTube 内容作者,文章我一般在 medium 上看,不过有免费文章数量限制,还有就是一些订阅邮件之类的
1 ... 7  8  9  10  11  12  13  14  15  16  
关于   ·   帮助文档   ·   博客   ·   API   ·   FAQ   ·   实用小工具   ·   5855 人在线   最高记录 6679   ·     Select Language
创意工作者们的社区
World is powered by solitude
VERSION: 3.9.8.5 · 35ms · UTC 02:36 · PVG 10:36 · LAX 18:36 · JFK 21:36
Developed with CodeLauncher
♥ Do have faith in what you're doing.